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A B S T R A C T

Automatic multi-organ segmentation in medical images is crucial for many clinical applications. The art
methods have reported promising results but rely on massive annotated data. However, such data is hard
to obtain due to the need for considerable expertise. In contrast, obtaining a single-organ dataset is relatively
easier, and many well-annotated ones are publicly available. To this end, this work raises the partially
supervised problem: can we use these single-organ datasets to learn a multi-organ segmentation model? In
this paper, we propose the Partial- and Mutual-Prior incorporated framework (PRIMP) to learn a robust
multi-organ segmentation model by deriving knowledge from single-organ datasets. Unlike existing methods
that largely ignore the organs’ anatomical prior knowledge, our PRIMP is designed with two key prior shared
across different subjects and datasets: (1) partial-prior, each organ has its own character (e.g., size and shape)
and (2) mutual-prior, the relative position between different organs follows the comparatively fixed anatomical
structure. Specifically, we propose to incorporate partial-prior of each organ by learning from the single-
organ statistics, and inject mutual-prior of organs by learning from the multi-organ statistics. By doing so,
the model is encouraged to capture organs’ anatomical invariance across different subjects and datasets, thus
guaranteeing the anatomical reasonableness of the predictions, narrowing down the problem of domain gaps,
capturing spatial information among different slices, thereby improving organs’ segmentation performance.
Experiments on four publicly available datasets (LiTS, Pancreas, KiTS, BTCV) show that our PRIMP can improve
the performance on both the multi-organ and single-organ datasets (17.40% and 3.06% above the baseline
model on DSC, respectively) and can surpass the comparative approaches.
1. Introduction

Multi-organ segmentation in abdominal CT scans (e.g., liver, pan-
creas, and kidney) is a critical prerequisite for many clinical applica-
tions, such as computer-aided diagnosis (CAD), radiotherapy planning,
and computer-assisted surgery (CAS) [1–3]. Recently, deep learning-
based methods [4,5] have achieved promising results on this task.
However, training the deep models heavily rely on massive data with
multiple organs annotated, which are difficult to obtain since the
annotating process requires considerable expertise and is extremely
time-consuming.

On the other hand, it is relatively easier to obtain a single-organ
dataset. Many well-annotated single-organ datasets have been released
to the public by different hospitals or research institutes, e.g., KiTS [6]
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with kidney annotated, and LiTS [7] with liver annotated. Although
these single-organ datasets can be collected together to form a diverse
training set, existing methods cannot effectively learn a multi-organ
segmentation model with it, since each sample only has the annotation
of one organ but lacks the others. Therefore, it is easier for us to
collect several such kinds of datasets, while existing methods cannot
effectively train a multi-organ segmentation model based on these
datasets. Then it raises a new task of learning a robust multi-organ
segmentation model from several single-organ datasets, which we
refer to as partially supervised scenario. In addition to the inherent
difficulties of abdominal CT image segmentation itself, such task is
challenging due to factors as below: (1) Each single-organ dataset only
contains annotation for specific organ, while leaves the remaining area
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Fig. 1. The overview definition of our task: Given a series of datasets, each of which only has single organ annotations, the goal is to learn a robust multi-organ segmentation
model from these datasets. The learned model should also generalize well on a new target dataset without using extra annotations.
(including other organ areas) as background. (2) There are considerable
domain gaps between the datasets, including the ones between single-
organ datasets and the ones between single/multi-organ datasets. An
overview illustration of this task is shown in Fig. 1.

In the literature, very few studies [8–10] attempt to solve such
partially supervised problem and train a multi-organ segmentation
model with partially labeled data. Dmitriev and Kaufman [8] use a
conditional CNN to generate the estimation of each organ by using the
class-label as an additional input. Huang et al. [10] adopt a co-training
framework to rectify the errors in pseudo-label generated from multiple
single-organ segmentation model. Zhou et al. [9] train a model by
considering a domain-invariant prior knowledge that different datasets
have a similar overall class distribution. Chen et al. [11] design a
multi-head network containing a shared encoder and multiple task-
specific decoders. Zhang et al. [12] use the task encoding vector
to generate dynamic header and produce task-specific segmentation
results. Although these methods can learn a multi-organ segmentation
model, they largely ignore the anatomical structure of organs, which is
critical in learning a robust model. Also, they do not explicitly consider
the problem of domain gaps between datasets during learning. On the
other aspect, the organs across different subjects and datasets follow
the comparatively fixed anatomical structure, regardless of the source
of the datasets. For example, (1) each type of organ usually shares
the similarity in terms of size, shape and position, and (2) the relative
positions between different organs are some kind of consistent. In this
study, we regard the first property as the ‘‘partial-prior’’ for single-
organ and the second one as ‘‘mutual-prior’’ for multi-organ. These two
anatomical priors can provide meaningful guidance for learning single-
organ or multi-organ segmentation models, which are under-explored
in the existing organ segmentation methods.

Inspired by the two key anatomical priors, we propose a Partial-
and-Mutual Prior incorporation framework (PRIMP) for learning multi-
organ segmentation. We formulate the partial-prior as the averaged
statistical masks of specific organ in the different axial plane, while
formulating the mutual-prior as the averaged statistical masks of multi-
organ in the different axial plane. Specifically, we propose to incor-
porate partial-prior of each organ by learning from the single-organ
2

statistics, and inject mutual-prior of multi-organ by learning from
their mutual statistics This partial- and mutual-prior is incorporated
in PRIMP’s learning on single and multiple organs, respectively, to
capture the multi-organ’s cross subject/dataset similarity on size, shape,
and relative position. The proposed PRIMP framework mainly consists
of the following four steps. (1) We train the robust single-organ seg-
mentation model for each organ by injecting its own partial-prior. (2)
We generate the multi-class pseudo-label for each dataset by using
the previous single-organ model, and then calculate the mutual-prior
from the generated pseudo-label over the training set. (3) We learn
the multi-organ segmentation model based on pseudo-labels by in-
corporating mutual-prior. (4) An additional feature alignment module
is added to bridge the domain gaps between the source and target
datasets. By explicitly considering the proposed partial- and mutual-
prior, our PRIMP can capture the organs’ similarities across different
individuals/datasets, and thus (1) Generating anatomically plausible,
robust and accurate predictions; (2) Narrowing down the domain gaps
and corresponding learning difficulties; (3) Capturing spatial informa-
tion while with less computational complex than 3D models, thereby
improving organs’ segmentation performance.

To sum up, the main contributions of this study are as follows:

• We propose a novel PRIMP framework by considering the anatom-
ical priors, enabling us to learn the robust multi-organ segmenta-
tion model from several single-organ datasets.

• By incorporating the partial- and mutual-prior of different organs,
the PRIMP is encouraged to capture anatomical invariance across
different subjects and datasets, thus guaranteeing the anatomical
reasonableness of the predictions, narrowing down the problem
of domain gaps, capturing spatial information among different
slices, thereby improving the organ segmentation performance.

• Experiments on four publicly available datasets show that our
PRIMP can improve the performance on both the multi-organ
and single-organ datasets and can surpass the comparative ap-
proaches.

2. Related work

In recent years, deep learning-based methods have shone in organ
segmentation tasks due to their ability to automatically learn dis-
criminative features. The following review focuses on the multi-organ



Biomedical Signal Processing and Control 80 (2023) 104339S. Lian et al.

n
p
m
t
a
t
b
W

segmentation methods in the era of deep learning, mainly classified into
methods in fully supervised scenarios (Section 2.1), methods in non-
fully supervised scenarios (Section 2.2), and a special form of non-fully
supervised learning that is the focus of this paper: methods in partially
supervised scenarios (Section 2.3).

2.1. Methods in fully supervised scenarios

Deep learning-based organ segmentation methods can be classified
into autoencoder (AE)-based methods [13], CNN-based methods [14],
GAN-based methods [15], GCN-based methods [16], etc. Among them,
FCNs [17] and their variants represented by U-Net [18] dominate,
including 3D-UNet [19], KiU-Net [20], nnUNet [21], etc. Most ex-
isting methods focus on specific datasets in which all target organs
have pixel-wise annotation. For example, Taghanaki et al. [22] focus
on the class-imbalance issue between multiple organs and propose a
curriculum learning-based loss function. Sinha and Dolz [23] propose
to use a guided self-attention mechanism to capture richer contextual
dependencies for different organ segmentation tasks. For the task of
abdominal CT multi-organ segmentation, Liang et al. [4] proposed a
multi-scale feature fusion network based on 3D attention mechanism,
which effectively reduced the difficulty of network convergence and
improved the accuracy.

Since the training of these fully supervised methods requires pixel-
wise annotation of multiple organs, which requires professional knowl-
edge and considerable manpower, researchers begin to pay attention
to methods based on annotation-efficient data, denoted as non-fully
supervised scenarios.

2.2. Methods in non-fully supervised scenarios

There are two types of non-fully supervised methods:
Semi-supervised methods try to learn from a small amount of an-
otated data. For example, Chaitanya et al. [24] attempt to solve this
roblem by data augmentation, and proposed to apply spatial defor-
ation field and intensity transformation field through GAN to syn-

hesize new samples from labeled and unlabeled data. Peng et al. [25]
pplied the idea of co-training to the task of semi-supervised segmen-
ation of organs. They enhanced diversity among different classifiers
y generating adversarial samples using labeled and unlabeled data.
eakly-supervised methods, on the other hand, solves the problem

of costly pixel-level annotation by training with weak labels, including
annotations with image-, box-, and scribble-level, etc. For example,
Liu et al. [26] explored the possibility to segment lung CT using only
scribble annotation. Such method added the mean teacher network
with uncertainty perception to the general segmentation framework to
encourage the model to be consistent with different disturbances. For
segmentation task with only point annotation, He et al. [27] proposed
to construct a contrastive learning framework based on the internal
similarity and difference between point annotation and unlabeled data,
so as to learn the specific visual representation of the target task.

Although semi- and weakly-supervised learning can reduce the
workload of labeling in multi-organ segmentation from different per-
spectives, they are obviously different from the partially supervised
scenarios that this paper focus on in the form of data supervision.
Therefore, the next subsection will separately introduce the organ
segmentation method in partial supervised scenarios.

2.3. Methods in partially supervised scenarios

The task that this paper focus on is to learn a robust multi-organ
segmentation model from several single-organ datasets, which is re-
ferred to as partial supervised scenarios in literature [9,28]. Studies
similar to this task are very limited and can be mainly divided into two
3

categories: conditional information based methods and pseudo label
based methods.

The conditional information based methods introduce conditional
control information in the training process to establish the relationship
between the model parameters and target organ tasks. For example,
Dmitriev and Kaufman [8] propose the conditional CNN for learning
multi-organ segmentation models. The conditional CNN is a single
model trained on several single-organ datasets by conditioning on class
labels. Zhang et al. [12] proposed DoDNet, which inherited this idea
and also introduced the additional task coding and dynamic param-
eter mechanism in the U-Net-like segmentation model, and limited
the dynamic parameters to the segmentation head. Zhang et al. [29]
adopted the current leading framework nnUNet [21] as the backbone
model, adding the task encoding as auxiliary information to nnUNet’s
decoder, and incorporating deep supervision mechanism to further
refine the output at different scales. Wu et al. [30] proposed TGNet,
which introduced two task-guided attention modules. The designed
modules highlight task-relevant features and suppress task-irrelevant
information in the feature extraction process. Chen et al. [11] intro-
duced a multi-branch decoder structure to solve the partial labeling
problem. The model has a shared encoder and eight decoders, each
corresponding to a specific task. During the training process, only the
branch corresponding to the task is updated, while the other branches
are not involved in the optimization process. The structure is not
flexible to expand to new categories.

These conditional information-based approaches restrict the con-
ditional information and variable modules to the local part of the
network, and lack the sensitivity to the variation of the feature of
different levels. Moreover, such methods can only generate single-organ
predictions sequentially, and cannot obtain multi-organ segmentation
results simultaneously.

The pseudo label based methods generates pseudo labels of unlabeled
organs from partially supervised data, thus converting this task to a
fully supervised-liked form. Zhou et al. [9] propose to learn a seg-
mentation model with partially labeled data by using an anatomical
prior-aware loss in the learning process. For dealing with the problem
of noisy pseudo label, Huang et al. [10] proposed the weight averaged
co-training framework to train the multi-organ segmentation model
with the generated pseudo-labels. The co-training strategy can rectify
the noise in the pseudo-labels for learning a more robust model. On the
other hand, Dong et al. [31] explored this problem from the perspective
of optimizing pseudo label generation. Such method is inspired by
vicinal risk minimization, where the fully labeled vicinal examples are
generated by linearly combining randomly sampled partial labels with a
weight randomly sampled from a Dirichlet distribution. Moreover, Fang
et al. [32] and Shi et al. [28] solved the problem from the perspective
of network design and loss function design.

Expect from the above methods, there are also some methods about
learning a unified model from multiple natural image datasets. For
example, the CDCL method (Cross-Dataset Collaborative Learning) pro-
posed by Wang et al. [33] attempts to build a unified semantic segmen-
tation system for autonomous driving, in which the model is simulta-
neously learned from multiple traffic datasets. CDCL can also be used
to learn a multi-organ segmentation model, and we trained a model by
the CDCL in the experiments for comparison.

The proposed PRIMP framework differs from the above methods
from the following aspect: (1) PRIMP takes into account the anatom-
ical prior knowledge of organs during the learning process, which is
important for the model to generate anatomically sound and accurate
predictions. In particular, [9] used prior knowledge that considers only
the simplest statistical information and required a small amount of
multi-organ labeled data. (2) PRIMP explicitly consider the problem of

inter-domain differences between datasets in the learning process.
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Fig. 2. Schematic diagram on generating statistical masks for both partial- and mutual-priors. The visualization results of the 10-fold single-organ and multi-organ statistical masks
are listed in the right side. Here, the different-colored heatmap represent the distribution statistics of different organs, blue for liver, pink for pancreas, and red for kidney.
3. Task and prior definition

3.1. Task definition

The task definition of learning multi-organ segmentation from
single-organ datasets focused in this study can be described as follows.
(1) Suppose that there are several single-organ datasets {𝑐1 ,… ,𝑐𝑀 }
obtained from different sources, and each 𝑐𝑚 contains annotated data
of a specific organ 𝑐𝑚. (2) Then we need to learn a segmentation model
based on these datasets that can simultaneously segment the multi-
organ {𝑐1,… , 𝑐𝑚} (e.g., {𝐿𝑖𝑣𝑒𝑟, 𝑃 𝑎𝑛𝑐𝑟𝑒𝑎𝑠,𝐾𝑖𝑑𝑛𝑒𝑦} in this study). (3) The
learned multi-organ segmentation model should also generalize to a
new target dataset 𝑇 without any additional annotations. The overall
process of this task is illustrated in Fig. 1.

3.2. Partial- and mutual-prior

Based on the organs across different subjects and datasets following
a comparatively fixed anatomical structure, we introduce the partial-
and mutual-priors in our framework as follows: (1) Partial-prior: each
type of organ usually shares the similarity in terms of size, shape,
and position; (2) Mutual-prior: the relative positions between different
organs are relatively consistent. Specifically, we formulate the partial-
prior as the averaged statistical masks of an organ in different axial
planes, and formulate the mutual-prior as the joint statistical masks
of multiple organs. The computation process of generating statistical
masks for partial- and mutual-priors is illustrated in Fig. 2.

We first locate the organs’ start-and-end slice in a CT volume and
then evenly divide those slices in the middle into 𝐾 segments along the
axial plane. Next, we compute the average label distribution map for
each segment over the whole training dataset as the prior mask,

𝑞𝑘 = 1
𝑁
∑

𝑙
𝑘
𝑖 , (1)
4

𝑁 𝑖=1
where 𝑁 is the number of volumes in the training set, 𝑙
𝑘
𝑖 is the mean

label map of the 𝑘th segment in the volume 𝑖.
Notice that, the partial-prior masks {𝑞1, 𝑞2,… , 𝑞𝐾} of organ 𝐶𝑚 is

computed by using the ground-truth from the single-organ dataset.
The mutual-prior {𝑞1𝑀 , 𝑞2𝑀 ,… , 𝑞𝐾𝑀} is based on the pseudo-label on all
single-organ datasets, which will be discussed later. We visualize these
partial-prior and mutual-prior masks in Fig. 2. After computing the
partial-prior and mutual-prior masks, we then leverage them as addi-
tional regularization terms to enforce the models’ predictions following
the closest prior mask’s anatomical structure. Through this design, our
model is able to obtain the spatial position information of organs to a
certain extent.

4. Methodology

To achieve the task described in Section 3.1, the overall frame-
work of our proposed partial-and-mutual prior incorporated model
(PRIMP) is illustrated in Fig. 3, which mainly consists of the following
four steps: (1) Learning robust single-organ models with partial-prior
(Section 4.1). (2) Generating pseudo-label and calculating the mutual-
prior (Section 4.2). (3) Learning multi-organ segmentation model with
mutual-prior (Section 4.3). (4) Bridging the domain gap between
single-organ datasets and target (Section 4.4).

4.1. Learning single-organ models with partial-prior

Learning single-organ segmentation models is the prerequisite of
our PRIMP framework. In this step, we incorporate the partial-prior
(PP) discussed in Section 3.2 for training models {𝑓𝐿, 𝑓𝑃 , 𝑓𝐾} on
{𝐿,𝑃 ,𝐾} , respectively. The process of incorporating the proposed
partial-prior is illustrated in Fig. 3 (1). For each input slice, we perform
a forward step through the model 𝑓 to obtain a segmentation mask 𝑝.
𝐶𝑚
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Fig. 3. The overall framework of PRIMP, which contains three steps and an additional feature alignment module. We list the abbreviation used in this figure as follows: seg for
segmentation, SV for supervision, SRC for source, and TD for target domain.
We then select the nearest mask from the partial-prior set {𝑞1,… , 𝑞𝐾}
of the organ 𝐶𝑚, by computing the euclidean distance.

𝑡 = argmin
𝑞∈{𝑞1 ,𝑞2 ,…,𝑞𝐾 }

𝑁
∑

𝑖=1
(𝑝𝑖 − 𝑞𝑖)2, (2)

where 𝑁 is the total pixel number, 𝑝𝑖 is the predicted softmax proba-
bility for the 𝐶𝑚 at pixel 𝑖.

After the selection, we leverage this partial-prior mask as the auxil-
iary constraint that prompts the predicted mask has a similar anatom-
ical structure as the closest statistical mask 𝑡. We implement the con-
straint through the KL-divergence, denoted as:

𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐾𝐿 = −

𝑁
∑

𝑖=1
𝑡𝑖 log

𝑝𝑖
𝑡𝑖
, (3)

where 𝑡 is the selected target prior mask, and 𝑝𝑖 is the predicted softmax
probability.

Due to edge regions for each organ usually are with complex mor-
phology and structure, we further propose to optimize the segmentation
model of organ 𝐶𝑚 in a cascaded self-attention (SA) manner [34,35]
(Fig. 3 (1)), which contains two U-shaped models. In the first stage,
we estimate a coarse segmentation mask 𝑠1_𝑠𝑒𝑔 and a coarse edge
mask 𝑠1_𝑒𝑑𝑔𝑒, and merge them to obtain the self-attention mask. In
the implementation, we dilate the 𝑠1_𝑠𝑒𝑔 and 𝑠1_𝑒𝑑𝑔𝑒 with a kernel
of size (5, 5). The self-attention mask is computed via:

𝑎𝑡𝑡 = ′
𝑠1_𝑠𝑒𝑔 + 0.9 ∗ ′

𝑠1_𝑒𝑑𝑔𝑒, (4)

where ′
𝑠1_𝑠𝑒𝑔 and ′

𝑠1_𝑒𝑑𝑔𝑒 are dilated masks. Notice that, the GT
masks for training the coarse edge masks are obtained by dilating the
edge map with a kernel of size (7, 7).

In the second stage, the attention mask 𝑎𝑡𝑡 is concatenated with
the original image to form the input for the second U-shaped model,
and thus we can get the enhanced final segmentation results around
the edge regions. The DiceCE loss is used for the segmentation model
learning of both stage 1 and stage 2, which goes as,

𝐷𝐶𝐸 = 𝜆𝐷𝑖𝑐𝑒𝐷𝑖𝑐𝑒 + 𝜆𝐶𝐸𝐶𝐸 , (5)

where 𝜆𝐷𝑖𝑐𝑒 and 𝜆𝐶𝐸 are weights for dice and cross-entropy loss, respec-
tively, and they are both set to 1. Specifically, 𝐷𝑖𝑐𝑒 = −

∑𝑛
𝑖=1(1−2⋅

𝑡𝑖 𝑝𝑖
𝑡𝑖+𝑝𝑖

)
and CE = −

∑𝑛
𝑖=1 𝑡𝑖 log

(

𝑝𝑖
)

, where 𝑡𝑖 is the groundtruth (GT) label, and
𝑝𝑖 is the predicted softmax probability for the 𝑖th class.

To sum up, we denote the DiceCE loss in stage 1-edge, stage 1-seg,
and stage 2 as 𝑠1−𝑒𝑑𝑔𝑒

𝐷𝐶𝐸 , 𝑠1−𝑠𝑒𝑔
𝐷𝐶𝐸 and 𝑠2

𝐷𝐶𝐸 , respectively. The overall loss
function for learning single-organ model of the organ 𝐶𝑚 (Fig. 3 (1)) is

 = 𝜆1𝑠1−𝑒𝑑𝑔𝑒 + 𝜆2𝑠1−𝑠𝑒𝑔 + 𝜆3𝑠2 + 𝜆4𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , (6)
5

𝑠𝑖𝑛𝑔𝑙𝑒 𝑠 𝐷𝐶𝐸 𝑠 𝐷𝐶𝐸 𝑠 𝐷𝐶𝐸 𝑠 𝐾𝐿
where 𝜆1𝑠 , 𝜆
2
𝑠 , 𝜆

3
𝑠 , and 𝜆4𝑠 are weights for different components in the sin-

gle stage. In the same way, we can train the single-organ segmentation
model {𝑓𝐿, 𝑓𝑃 , 𝑓𝐾} for liver, pancreas, and kidney, respectively.

4.2. Generating pseudo-label and calculating mutual-prior

After learning the single-organ models {𝑓𝐿, 𝑓𝑃 , 𝑓𝐾}, we adopt them
to generate the multi-organ pseudo-label for the single-organ datasets
{𝐿,𝑃 ,𝐾}. Specially, we use the {𝑓𝐿, 𝑓𝑃 } to estimate pseudo-label
of the liver and pancreas of 𝐾 , and combine them with kidney GT
label. Then, we will have the 𝐾 with multi-organ labels, and can get
the 𝐿 and 𝑃 in the same way. We denote {𝑆} = {𝐿,𝑃 ,𝐾}.

We further generate statistical masks of multi-organ on different
axial plane for incorporating mutual-prior, which is illustrated in Sec-
tion 3.2 and Fig. 2 (b). Notice that, after pseudo-labels generation,
we first locate the start and end slice for each volume in {𝑆},
based on the pseudo-label. Then we equally divide those slices in the
middle to 10 folds and compute the mutual-prior masks across the
{𝑆}, denoted as {𝑞1𝑀 , 𝑞2𝑀 ,… , 𝑞𝐾𝑀}. This locating step will assign the
distribution of multiple organs from different volumes in each fold
roughly the same. Subsequently, these masks will be used as mutual-
priors in Sections 4.3 and 4.4 to promote the learning of the multi-organ
segmentation models.

4.3. Learning multi-organ model with mutual-prior

To learn a robust multi-organ segmentation model as shown in
Fig. 3 (3), we incorporate the multi-organs’ mutual-prior (MP)
(Fig. 2 (b)) calculated in Section 4.2 into the model training. Simi-
lar to the process of using the partial-prior in Section 4.1, we first
compute the multi-class segmentation map for an input slice and
then select the nearest mutual-prior mask from {𝑞1𝑀 , 𝑞2𝑀 ,… , 𝑞𝐾𝑀} based
on the euclidean distance. Next, we apply the KL-divergence to en-
force the segmentation map following the selected mutual-prior mask’s
anatomical structure.

In this multi-organ segmentation learning step, we denote the
DiceCE loss for basic segmentation (same as Eq. (5)) as 𝑚𝑢𝑙𝑡𝑖

𝐷𝐶𝐸 , and the
KL loss for mutual-prior constraint (same as Eq. (3)) as 𝑚𝑢𝑡𝑢𝑎𝑙

𝐾𝐿 . The loss
function for this step is:

𝑚𝑢𝑙𝑡𝑖 = 𝜆1𝑚
𝑚𝑢𝑙𝑡𝑖
𝐷𝐶𝐸 + 𝜆2𝑚

𝑚𝑢𝑡𝑢𝑎𝑙
𝐾𝐿 . (7)

In this manner, our method will encourage the current prediction close
to the nearest multi-organ distribution prior, thus ensuring the accuracy
and anatomical rationality of the predictions.
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Table 1
The statistics of datasets adopted in our study.

Datasets Labeled organs #Volumes

Training Testing Total

LiTS (𝐿) Liver 104 26 130
Panc (𝑃 ) Pancreas 225 57 282
KiTS (𝐾 ) Kidney 168 42 210

BTCV (𝑇 ) {L, P, K}a 6b 24 30

a{L, P, K} are short for {Liver, Pancreas, Kidney}, other labeled organs or tissues in
this dataset are treated as background.
bSix volumes are randomly selected for domain alignment (without annotation), while
the rest 24 volumes for evaluation.

4.4. Bridging the domain gap between single-organ datasets and target

Although all the datasets are abdominal CT scans and share similar-
ities in anatomical, different datasets still suffer the domain gap issue
since they are obtained from various places by different CT scanners. To
bridge this domain gap, we introduce an additional domain alignment
(DA) module to align the overall feature distribution between the {𝑆}
and {𝑇 }. The computation details of this module are as follows. Before
optimizing each epoch, we first calculate the average final encoded-
feature of all samples in the target datasets {𝑇 } and regard it as the
reference of the target, denoted as 𝑡𝑔𝑡. Then during the optimization
process, we use a KL regularization term to minimize the divergence
between the final encoded-feature  𝑖

𝑠𝑟𝑐 of each sample in {𝑆} and
the 𝑡𝑔𝑡. This scheme is illustrated in Fig. 3 (4). Consequently, we can
mitigate the domain gap between the source and target.

In summary, after adding this additional domain alignment mod-
ule, the overall loss function for the multi-organ segmentation model
becomes to:

′
𝑚𝑢𝑙𝑡𝑖 = 𝜆1𝑚

𝑚𝑢𝑙𝑡𝑖
𝐷𝐶𝐸 + 𝜆2𝑚

𝑚𝑢𝑡𝑢𝑎𝑙
𝐾𝐿 + 𝜆3𝑚

𝑎𝑙𝑖𝑔𝑛
𝐾𝐿 . (8)

5. Experiments

5.1. Datasets and evaluation metrics

Datasets: We utilize two groups of datasets for training and testing
PRIMP, including the partially labeled single-organ datasets and the target
multi-organ dataset. We summarize the statistical details of the datasets
in Table 1.

5.1.1. The partially labeled single-organ datasets
The source datasets consist of the LiTS (𝐿) [7], Pancreas (𝑃 ) [36]

and KiTS (𝐾) [37]. In detail, we only use the training sets of these
three datasets for training our model. The rest testing sets are used for
evaluation. Note that, the tumor areas related to an organ are treated
as corresponding organ areas in this study.

5.1.2. The target multi-organ dataset
The target dataset used in this study is the BTCV (𝑇 ) [38] dataset.

We adopt this dataset to evaluate the generalization ability of our multi-
organ segmentation model, which is trained from the previous three
single-organ datasets.

Evaluation Metrics: We employ the Dice Similarity Coefficient
(DSC) as the evaluation metrics to measure the similarity between the
predictions and the ground-truth segmentation masks. In detail, DSC
is a statistic for gauging the similarity of two samples, which defined
as: DSC( ,) = 2×|∩|

||+|| , where  is the binary prediction and  is the
ground-truth.
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5.2. Implementation details

We implement the proposed model with the PyTorch library [39]
n a device with an NVIDIA 2080TI GPU. We use the soft tissue CT
indow with the HU in a range of [−512, 512]. The input image is

resized to 512 × 512 and then randomly cropped to 256 × 256 for
training. The random flip is used as data augmentation. The network
is a U-shaped structure with a resnext50_32x4d [40] as encoder, and
is implemented by the segmentation-models-pytorch (SMP) toolbox.2
We train the network with a maximum training epoch of 12, and the
batch size is set to 8. The Adam optimizer [41] is used for optimization
with an initial learning rate of 1e-4. The learning rate is decreased
by 0.2 every four epochs. The cross-entropy loss and dice loss used in
this study are the same as nn-UNet [21]. The hyper-parameters of the
single-organ model learning are 𝜆1𝑠 = 2, 𝜆2𝑠 = 2, 𝜆3𝑠 = 5 and 𝜆4𝑠 = 5. For
the multi-organ learning, the hyper-parameters are 𝜆1𝑚 = 5, 𝜆2𝑚 = 5 and
𝜆3𝑚 = 0.01.

5.3. Ablation study

5.3.1. Components analysis in single-organ learning
We conduct evaluation for the components introduced in the single-

organ segmentation stage (Fig. 3 (1)), including: (a) Adopting the
vanilla cascaded U-shaped model; without self-attention (SA) scheme
and single-organ statistical prior (partial-prior, PP); (b) Applying the
self-attention (SA) scheme; (c) Employing the single-organ statistical
masks as partial-prior (PP); (d) Using both SA and the PP scheme.
We summarize the results of ablation study on single-organ models in
Table 2.

The left part of Table 2 shows the results on the testing set of the
source datasets ({𝐿,𝑃 ,𝐾}), and the right part is the direct testing
results on the target dataset {𝑇 }. By analyzing different components,
we have the following observations.

(1) The proposed SA and PP are beneficial for the source
datasets. From the left part of Table 2, we find that: First, incorporating
SA can slightly increase the average DSC from 87.09% to 87.48%,
where 𝐿 witnesses a notable rise of 1.47%. Second, adding PP can
significantly boost the average DSC from 87.09% to 89.14%. Third,
when jointly incorporating both SA and PP, our model achieves a
further improvement, with the average DSC rising from 87.09% to
90.15%. Specifically, leveraging PP to {𝑃 } can bring a remarkable
increase of the pancreas’ DSC (from 75.23% to 79.57%). When further
adding SA, the overall promotion is more remarkable (from 75.23%
to 81.56%). These factors demonstrate that the proposed SA and PP
are mutually beneficial for the source datasets, especially for datasets
with smaller tissues and more unbalanced data, such as pancreas. It is
worth noting that after adding SA, the DSC on 𝐾 slightly decreased
from 94.80% to 94.48%. The reason may come from over-fitting and
false positives caused by the special structure of kidney.

(2) Directly applying single-organ models to the target dataset
would lead to significant performance drop. There are innegligible
domain gap between source and target datasets. We can observe a
striking performance degradation for all source single-organ models
when directly applied to the target dataset. For example, when using
vanilla U-Net, the average DSC drop from 87.09% to 67.00% when
applied to the target.

(3) The merits brought by SA and PP can be generalized directly
to the target domain. After incorporating SA and PP in training, the
performance will achieve consistent improvements for the three organs
in the target dataset. Especially, the average DSC will rise from 67.00%
to 71.58% when incorporating both SA and PP. For the pancreas with
a smaller size and more unbalanced data, we have a remarkable boost
similar to the one in the source datasets (from 36.19% to 48.17%).

2 https://smp.readthedocs.io/.

https://smp.readthedocs.io/
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Table 2
The results of ablation study on single organ model.

SA PP DSC (%) on {𝐿 ,𝑃 ,𝐾} DSC (%) on {𝑇 }

Liv. Pan. Kid. Avg. Liv. Pan. Kid. Avg.

Single organ model

91.22 75.23 94.80 87.09 84.74 36.19 80.07 67.00
✓ 92.69 75.26 94.48 87.48 88.70 42.74 77.30 69.58

✓ 92.74 79.57 95.12 89.14 87.41 44.94 81.41 71.26
✓ ✓ 93.64 81.56 95.27 90.15 86.14 48.17 80.42 71.58

SA refers to cascaded self-attention scheme. PP refers to partial-prior. liv., pan., kid., and avg. are short for liver, pancreas,
kidney, and average, respectively.
Table 3
The results of ablation study on multi-organ model. w/ PL refers to training with
pseudo label. MP and DA refer to multi-organ statistical masks as mutual-prior, and
source-target feature alignment, respectively.

Organ model w/ PL MP DA DSC(%) on 𝑇

Liv. Pan. Kid. Avg.

Single 86.14 48.17 80.42 71.58

Multi

✓ 92.08 71.43 83.52 82.34
✓ ✓ 92.49 72.80 83.89 83.06
✓ ✓ 92.61 72.06 84.43 83.03
✓ ✓ ✓ 93.73 74.46 85.00 84.40

Liv., pan., kid., avg. are short for liver, pancreas, kidney, average, respectively.

Fig. 4. Single-organ prediction results comparisons on U-Net, ours without partial-
prior, and ours with partial-prior. PP is short for partial-prior. blue for liver, pink for
pancreas, and red for kidney.

These results indicate that merits brought by SA and PP in source
datasets also can generalize to the target dataset without additional
operations.

Qualitative comparison of different single-organ models. The
visualized results on different organs of {𝐿,𝑃 ,𝐾} are displayed in
Fig. 4, where segmentation results on vanilla U-Net, ours without partial-
prior, and ours with partial-prior are listed. From the third column, we
observe that training with vanilla U-Net suffers the issue of identifying
liver (a3) and kidney (c3). While in the fourth column, with only the
SA module involved, our model can better locate the three organs (a4–
c4), however still fails to maintain organs’ anatomical morphology.
When further incorporating PP, as indicated in (a5, b5, c5) with yellow
arrows, our model can better locate organ regions and maintain the
integrity and anatomical reasonableness of organs, producing more
accurate segmentation results.

5.3.2. Components analysis in the multi-organ learning
We further conduct experiments to evaluate the effect of the com-

ponents introduced in the multi-organ segmentation learning stage
(Fig. 3 (3) and (4)) based on the generated pseudo labels, including:
(a) Directly testing single organ models on {𝑇 } with SA and PP
incorporated (same as the last line of Table 2’s right part). (b) Adopting
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the vanilla U-shaped model based on {𝑆}. (c) Utilizing multi-organ’s
statistical masks as mutual-prior (MP) (Section 4.3). (d) Adding domain
alignment (DA) module between {𝐿,𝑃 ,𝐾} and {𝑇 } to narrow
down the domain gaps. (e) Applying both MP and DA module. We
report the ablation studies on multi-organ models in Table 3, and have
the following conclusions.

(1) Learning with pseudo-labels can boost the model perfor-
mance. From the first two lines in Table 3, we can find that learning
the multi-organ model with pseudo-labels (generated as Fig. 3 (2)) can
significantly boost the performance of multi-organ segmentation. For
example, the average DSC rises from 71.58% to 82.34%, and DSC of
pancreas in {𝑇 } witnesses a remarkable boost of 23.26%.

(2) The proposed MP and DA are beneficial for segmentation
on {𝑇 }. Compared with the baseline model (line 2 of Table 3),
incorporating either the proposed MP and DA can bring consistent
increases in DSC for different organs. Specifically, involving MP brings
an improvement of 0.72% on average DSC, while applying DA between
{𝑆} and {𝑇 } achieves the rise of 0.69% in average DSC. Simultane-
ously adopting MP and DA boosts the average DSC from 82.34% to
84.40%, where DSC improvement for liver, pancreas, and kidney are
1.65%, 3.03%, and 1.48%, respectively. These factors demonstrate the
effectiveness and complementary of the proposed MP and DA.

(3) The choice for K segment when generating prior. We also
evaluate different choices of 𝐾 as introduced in Section 3.2. Specifi-
cally, 𝐾 is the number of segments when generating prior masks. The
comparing results summarized in Fig. 5. For pancreas and liver, when
𝐾 = 10, our model achieves best DSC. However, since liver is larger,
the mutual-prior generated with 𝐾 = 20 yields slightly higher results.
For the average DSC, our model achieves best DSC when 𝐾 = 10. For
the sake of uniformity, we choose 𝐾 = 10 in this study.

Qualitative results on multi-organ models. In Fig. 6, we visualize
the multi-organ segmentation results of different models. From the
third column, we can find that only learning with pseudo labels still
suffers the main issue of identifying the pancreas as in (a2), (b2), and
also produce some anatomically impossible false-positive prediction of
the liver (c2). After incorporating the MP or DA, the segmentation of
pancreas and liver will be improved, while still have false-positive (a3,
a4, b3, b4, c3, c4). In the last column, by simultaneously adopting MP
and DA, the anatomically irrational false positive are suppressed, with
the organ-specific morphology better maintained.

5.4. Comparisons with state-of-the-arts

We compare the proposed PRIMP with a series of state-of-the-
art models, and report the comparison results on source datasets
of {𝐿,𝑃 ,𝐾} and target dataset {𝑇 } in Table 4. The compari-
son methods include: (1) U-Net𝑠𝑖𝑛𝑔𝑙𝑒: Several vanilla U-Nets trained
on {𝐿,𝑃 ,𝐾}. (2) PaNN: The prior-aware network proposed by
Zhou et al. [9], which uses the category statistic distribution of different
organs as prior. (3) Co-training: The co-training weight-averaged model
proposed by Huang et al. [10] that leverages a co-training framework
to rectify the pseudo label during the training. (4) CDCL: The cross-
dataset collaborative learning method proposed by Wang et al. [33] for
Semantic Segmentation in Autonomous Driving. (5) Med3D: a multi-
head network proposed by Chen et al. [11], which contains a shared
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Fig. 5. The DSC results when selecting different 𝐾 for MP as defined in Section 3.2.
Fig. 6. Multi-organ prediction results compared on U-Net, ours without mutual-prior, and ours with mutual-prior. MP is short for mutual-prior. blue for liver, pink for pancreas,
and red for kidney.
Table 4
Comparisons with state-of-the-art approaches. The subscript 𝑠𝑖𝑛𝑔𝑙𝑒 means the model is trained with only {𝑃 ,𝐾 ,𝐿}, without any
pseudo-label.

Methods Type DSC (%) on {𝐿 ,𝑃 ,𝐾} DSC (%) on {𝑇 } Speed (s/case)

Liv. Pan. Kid. Avg. Liv. Pan. Kid. Avg.

U-Net𝑠𝑖𝑛𝑔𝑙𝑒 2D 91.22 75.23 94.80 87.09 84.74 36.19 80.07 67.00 4.61
PaNN [9] 2D 92.99 71.55 90.95 85.16 91.99 60.81 86.93 79.91 8.02
Co-training [10] 2D 93.09 71.04 90.79 84.97 90.99 66.29 80.24 79.17 8.69
CDCL [33] 2D 92.91 74.83 94.14 87.29 88.93 68.42 75.28 77.55 6.08
Med3D [11] 3D 96.13 80.54 93.75 90.14 89.57 75.85 79.11 81.51 238.63
DoDNet [12] 3D 95.70 82.09 95.94 91.24 91.94 73.32 85.68 83.65 250.68
TGNet [30] 3D 95.10 81.27 94.94 90.44 88.47 75.27 84.80 82.85 422.22
Ours𝑠𝑖𝑛𝑔𝑙𝑒 2D 93.64 81.56 95.27 90.15 86.14 48.17 80.42 71.58 15.61
Ours 2D – – – – 93.73 74.46 85.00 84.40 13.44
encoder and multiple task-specific decoders. (6) DoDNet: dynamic on-
demand network proposed by Zhang et al. [12], which introduce an
additional task coding and dynamic parameters to the segmentation
head. (7)TGNet: The task-guided network proposed by Wu et al. [30]
Specifically, the learning and testing process of [10] are separated
between {𝑐1,𝑐2,𝑐3} and {𝑇 }, and [42] require fully supervised
data in {𝑇 }, which is out of touch with the application scenario. To
have a fair comparison, we re-implement PaNN [9], Co-training [10]
and CDCL [33] method with the same backbone network as ours. Note
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that U-Net𝑠𝑖𝑛𝑔𝑙𝑒, PaNN, Co-training, and our PRIMP use 2D models,
while Med3D, DoDNet, and TGNet adopt 3D models and with more
computational complexity and time requirements. From Table 4, we
have the following findings.

(1) On the source datasets, our single models are superior
to other 2D methods, and comparable to other 3D methods. As
indicated in the left part of Table 4, our single models with partial-
prior and self-attention scheme have a significant improvement on all
organs compared to other 2D methods in source datasets. Specifically,
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Fig. 7. Multi-organ segmentation results compared with the state-of-the-art models. We show the results of ground-truth (GT), U-Net [18], Co-training [10], PaNN [9], and the
proposed PRIMP. blue for liver, pink for pancreas, and red for kidney.
our single model achieves an average DSC of 3.06%, 4.99%, 5.18%,
2.96% higher than U-Net𝑠𝑖𝑛𝑔𝑙𝑒, PaNN [9], Co-training [10], CDCL [33]
respectively. It is worth noting that pancreas, which with relatively
smaller size and more complex shape, witness the most significant
improvement. These improvements are mainly due to (a) The incor-
poration of single-organ anatomical prior through PP, and (b) The
enhanced model learning ability for organ edges by SA. Also, our
single model is comparable to the other 3D models, e.g., 0.02 ahead
of Med3D, 0.28/1.08 below TGNet/DoDNet. This is because through
partial prior and corresponding position prediction operations, our
model is able to obtain the spatial position information of organs
to a certain extent. Although the overall Dice is slightly lower than
TGNet/DoDNet, the computational complexity and time requirements
of our 2D model are much lower than that of the 3D models. (2)
Our multi-organ model has a higher generalization ability than the
others on target dataset. From the right side of Table 4, we observe
that: First , despite the enhanced capability of the single-organ models,
directly applying them on {𝑇 } achieves a little improvement, with
average DSC rises from 67.00% to 71.58%. Second, PaNN, Co-training
and CDCL, Med3D, DoDNet, TGNet are designed for this task and can
achieve more significant gains: 8.33%, 7.59%, 5.97%, 9.93%, 12.07%,
11.27% higher than Ours𝑠𝑖𝑛𝑔𝑙𝑒, respectively. Third, with MP and DA in-
corporated, PRIMP achieves consistent and remarkable boosts in three
organs’ accuracy on {𝑇 }. As a result, in 𝑇 regarding the average DSC,
our PRIMP achieves state-of-the-art results, which is 12.82%, 4.49%,
5.23%, 6.85%, 2.89%, 0.75%, 1.55% higher than Ours𝑠𝑖𝑛𝑔𝑙𝑒, PaNN, Co-
training, CDCL, Med3D, DoDNet, and TGNet, respectively. On the other
aspect, we can still observe a 7% and 10% accuracy gap of the pancreas
and kidney between the segmentation on the source and target of our
method. Fourth, Our PRIMP achieves the best combination of inference
time and segmentation accuracy. As can be seen from the last column
of the table, although 3D-based methods achieved similar average Dice,
they required much more interference time. For example, due to the
corresponding 3D conv operations, Med3D, DoDNet, and TGNet require
over 200 s for predicting one case on our device. Due to the need
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for feature map comparison in the mutual prior step, our model is
slightly slower than other 2D models (e.g., PRIMP: 13.44 s vs. PaNN:
8.02 s). However, compared to 3D based models, the improvement in
segmentation accuracy of our model is significant, and the increase in
prediction time is acceptable.

Qualitative comparisons between PRIMP and SOTAs. We also
visualize the segmentation results of our model and the comparison
methods in Fig. 7, and have the following findings. First, compared
to other SOTA models, PRIMP can better maintain the organ-specific
morphology and position, e.g., pancreas in (b5) and liver in (c5).
Second, PRIMP is able to suppress the anatomical irrational predictions
and the corresponding false positives. For example, compared to other
results, the false positives in (a5, d5) for pancreas, (b5) for liver, and
(e5) for kidney, are eliminated by PRIMP. Generally, the proposed
partial- and mutual-prior helps the model maintaining the anatomical
structure and generating more accurate segmentation results on the
new target dataset.

6. Discussion

In this section, we briefly discuss the main strengths, the versatility,
the limitations of our PRIMP model.

Strength: Unlike existing methods which do not explicitly consider
the anatomical prior knowledge, our PRIMP innovatively incorporates
organs’ partial and mutual anatomical prior, and thus (1) Generating
anatomically plausible, robust and accurate predictions; (2) Narrowing
down the domain gaps and corresponding learning difficulties; (3) Cap-
turing spatial information while with less computational complex than
3D models, thereby improving the organ segmentation performance.
Note that all the experiments covered in this manuscript used public
medical image segmentation datasets (for example, LiTS and KiTS), and
there is no clinical validation and no pathological data.

PRIMP’s versatility: Our research helps to overcome the practical
problems in partially supervised scenarios, and achieve intelligent and
robust abdominal CT multi-organ segmentation. More importantly, this
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research intends to be a possible paradigm for solving partially super-
vised medical image segmentation tasks, and inspires other research on
similar tasks (for example, optic disc, vessels, and pathological areas
segmentation in ophthalmology research).

Limitations: We summarize the limitations of PRIMP as follows.
(1) When generating statistical masks for both partial- and mutual-
prior, PRIMP requires the orientation of all frames to be aligned,
otherwise additional errors will be introduced. (2) Feature comparison
and positioning operation in partial- and mutual-prior calculation is
relatively time-consuming compared to other 2D models. (3) The inter-
frame spatial information is not explicitly modeled, which may lead to
further performance gains.

Future work: There are two main directions we considered for
the future direction of this problem: (1) VAE-based compressed prior
knowledge acquisition: We consider the use of VAE to obtain com-
pressed knowledge representations in latent space for different
single/multi-organs, and promote the segmentation model to follow the
learned anatomical priors. (2) Self-supervised mutual reconstruction for
narrowing domain gaps: In addition, we consider to introduce a self-
supervised mechanism, where the semantic-level erasure and mutual
reconstruction of target regions in different datasets is conduct. In this
way, the domain gaps between different datasets are narrowed, and the
generalization performance of the segmentation models are improved.

7. Conclusion

In this study, we propose the PRIMP framework to learn robust
multi-organ segmentation model from several single-organ datasets,
The partial- and mutual-priors are formulated as the statistical informa-
tion over the datasets and encourage the PRIMP to give anatomically
proper segmentation, both in organs’ size, shape, and location. The
ablation study and the comparison with the state-of-the-art solutions
demonstrate the effectiveness of leveraging priors both when learning
single-organ and multi-organ segmentation models. For future work,
we will further investigate the anatomical prior from different aspects,
such as more efficient prior knowledge representation and more flexible
transfer/incremental learning among different modalities/datasets.
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