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Summary

According to statistics, kidney cancer is one of the most deadly cancer. An early and

accurate diagnosis can significantly increase the cure rate. Accurate segmentation of

kidney tumors in CT images plays an important role in kidney cancer diagnosis. How-

ever, it is a challenging task due to many different aspects, such as low contrast, irregu-

lar motion, diverse shapes, and sizes. For solving this issue, we proposed a SE-ResNeXT

U-Net (SERU) model in this study, which takes the advantages of SE-Net, ResNeXT and

U-Net. Besides, we implement our model in a coarse-to-fine manner to utilize the infor-

mation of context and key slices from the left and right kidney. We train and test our

method on the KiTS19 Challenge. Experimental results demonstrate that our model

can achieve promising results.
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1 INTRODUCTION

According to statistics, more than 400 000 kidney cancers were diagnosed worldwide in 2018, leading to 17 500 deaths.1 Kidney cancer is one of

the most common lethal tumors in the urinary system, and the incidence rate in coastal areas of China has increased significantly in recent years.

A computed tomography (CT) scan is among the best choices for the workup of kidney tumors, including kidney cancer. The fine segmentation is

helpful to the quantitative and qualitative study of renal cancer.

However, accurate segmentation of kidney tumors in CT images is a challenging task due to many different aspects, such as low contrast, irreg-

ular motion, diverse shapes, and sizes. Moreover, most of the tumors show a similar appearance in regular CT scans with surrounding tissues. It is

worth mentioning that in most CT cases, the kidney region accounts for a small proportion of the entire CT image, let alone the tumor area. For

example, in the Kidney Tumor Segmentation Challenge (KITS19) challenge's dataset, the kidney region pixels only take up about 0.69% within the

whole image. The tumor region pixels take an even much smaller ratio of 0.17%. This leads to a severe class imbalance problem.2,3

For solving this challenging task, we proposed SE-ResNeXT U-Net (SERU) model, which combines the advantages of SE-Net,4 ResNeXT,5 and

U-Net.6 For utilizing the information of context information and the key slices, we implement our model in a two-stage coarse-to-fine manner. In
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the first stage, we train a model to perform a coarse segmentation in the whole image. Then, we find the key slice in the left and right kidney and

obtain key patches by finding max contours. In the second stage, we refine the segmentation by taking the obtained patches as input. In this study,

the refinement network has the same architecture as the first stage. After refining segmentation, for fully utilizing the global and local information,

we integrate the prediction from the first stage and the second stage to get the final segmentation.

We train, validate, and test our method on the KiTS19 Challenge,1 which contains 300 kidney tumor cases with clinical context, CT semantic

segmentation, and surgical outcomes. Following the protocol in this dataset, we randomly selected 210 (70%) as the training set and the rest 90

(30%) cases as the testing set. A more detailed introduction of the KiTS19 dataset can be referred to KiTS19 Challenge Homepage * and KiTS GitHub

page †.

To evaluate the performance, we compare the proposed SERU model with the two most widely used medical image segmentation methods, that

is, U-Net and FCN. We adopt kidney + tumor Dice, tumor Dice, and average Dice as the evaluation metrics. Besides, we conduct an ablation study

to analyze the effectiveness of each component in our proposed SERU.

Experimental results show that the performance of the first stage can surpass the baseline U-Net and FCN model, and the second stage can

further improve the accuracy. These results demonstrate the superiority of our proposed model, as well as the advantages of our coarse-to-fine

architecture.

2 RELATED WORK

In recent years, along with the progress of computing power, we have witnessed great development in many fields.7-11 In the past few years, deep

learning-based methods, especially convolutional neural networks, achieved great success in medical image analyzing. It has become the first choice

for various medical image analyzing applications,12 including medical image segmentation,6,13,14 detection and classification of abnormality,15-17

medical image retrieval,18-20 etc. Specifically, in the task of medical images segmentation using deep learning, many promising approaches emerged

in recent years. In Reference 21, FCN model is proposed to solve the problem of low resolution after convolutional neural networks (CNN's) pool-

ing layers in the task of semantic segmentation. Then U-Net6 improved FCN through a series of skip-connection and U-shaped architecture to

maintain the information from lower and higher layers. U-Net achieved gratifying results on medical image segmentation tasks, and many variants

of U-Net are proposed for different subtasks of medical image segmentation, including brain tumor segmentation,22 pancreas localization,23 iris

segmentation,14 etc. Cicek et al24 extends the original two-dimensional (2D) U-Net to a three-dimensional (3D) version by replacing all 2D opera-

tions with their 3D counterparts. This work is used for semi-automatically and fully automatically segmenting the animal kidney volumetric given a

sparse annotation, and achieve good performance. Also, some researchers focus on the deep model itself, and their eyes are not limited to a single

medical image segmentation task. Isensee et al25 proposed nnU-Net, a robust and self-adapting framework that uses only naive U-Net model and

can automatically adjust hyperparameters to a new dataset, is proposed. The nnU-Net performs very well in a competition consisting of a series of

medical image segmentation tasks, called Medical Segmentation Decathlon challenge.

Specifically, in the field of kidney-related analysis, many different deep learning-based methods have been proposed.26-28 Sharma et al28 pro-

posed a deep learning-based approach for segmenting polycystic kidneys and for total kidney volume computation in CT images. In this method,

a basic encoder-decoder model following the architecture of VGG-16, with batch normalization for solving the internal covariance shift problem.

Researchers26 from the Memorial Sloan Kettering Cancer Center compared the performance of manual features and "deep" features on renal tissue

slice images for renal cancer detection, and obtained 89% accuracy of disease detection on the tissue microarray dataset by using AlexNet. Hussian

et al27 proposed an approach that rearranges the 3D images into an extended 2D image collage, and train a deep-learning-based model to detect kid-

ney slice containing renal cell carcinoma with 98% accuracy. Yin et al29 represented an end-to-end framework, which integrated boundary distance

regression and pixel classification networks, to cope with kidney segmentation on ultrasound images. Overall, given that kidney tumor segmenta-

tion is a challenging task with severe sample imbalance problems, few approaches attempt to solve this issue. In this paper, we attempt to solve this

problem and achieve higher segmentation accuracy.

3 METHODOLOGY

In this section, we will describe the details of our proposed cascaded SE-ResNeXT U-Net (SERU) for kidney and tumor segmentation in CT images.

Firstly, we introduce the preprocessing step used to enhance the contrast of CT images in Section 3.1. Then, the detailed network architecture

of SERU is depicted in Section 3.2. After, we present the cascaded training and testing scheme used for improving the segmentation accuracy in

Section 3.3.

*https://kits19.grand-challenge.org/

† https://github.com/neheller/kits19

https://kits19.grand-challenge.org/
https://github.com/neheller/kits19
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F I G U R E 1 The framework of the proposed SE-ResNeXT U-Net (SERU) model

3.1 Preprocessing

For better extract effective features on deep model, we first normalize the given CT images by converting the original Hounsfield Unit value

to grayscale value ranged from 0.0 to 1.0. We then apply contrast limited adaptive histogram equalization (CLAHE) operation30 as preprocess-

ing step for increasing CT images' contrast, and alleviating the learning difficulty of CNNs. The CLAHE is an improvement of adaptive histogram

equalization, which limits the contrast of the image and reduces the noise. In addition, we adopt random horizontal and vertical flip as data

augment.

3.2 Model architecture

To deal with the challenges in kidney and tumor segmentation in CT scans, we proposed a SERU model, which combines the advantages of SE-Net,4

ResNeXT,5 and U-Net.6 The SE-Net won the last ImageNet competition Image Classification mission with great advantage, which shows the effec-

tiveness of such architecture in computer vision tasks. The ResNeXT is a combination of ResNet31 and Inception Net,32 which won the ILSVRC 2016.

The U-Net is the most widely used CNN model in medical image segmentation, due to it is effective for processing biological structured information

and does not require a very large amount of training data.

The framework of the proposed SERU is depicted in Figure 1. Overall, the proposed SERU has a U-Net-like architecture with an encoder, a

decoder and skip connections. However, in the contracting path (encoder) of SERU model, we adopt SE-ResNeXt50_32x4d blocks pretrained with

ImageNet‡. While in the expanding path (decoder), we use the original blocks as in U-Net6 model.

SE-Net. The SE-Net terms the "Squeeze-and-Excitation"(SE) block, mainly consist of the squeeze operation and the excitation operation. The SE

block first performs a squeeze operation on the features to generate a channel descriptor, which represents a distribution of channel-wise feature

responses. We adopt a global average pooling layer as a channel descriptor to generate channel-wise statistics, which is calculated by average each

channel. Then, an excitation operation is adapted to learn the sample-specific activations for each channel. Considering the model complexity, we use

two fully connected (FC) layers to implement the excitation. The parameters of FC are W1 ∈ R
C
r × C and W2 ∈ R

C× C
r , respectively, with reduction

ratio r. Finally, the initial features are reweighted by the learned activations to produce the output.

‡ https://github.com/Cadene/pretrained-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch
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out = FC(z,W) = W × z, (1)

ResNeXt. Inspired by VGG/ResNets and Inception, the ResNeXt uses a stack of residual blocks with the same topology and adopts a

split-transform-merge structure in each block (i)Split: The feature is sliced as a low-dimensional embedding. (ii) Transform: The split data is trans-

formed by the group convolution layer. (iii) Merge: The transformations are finally merged by addition. In the SE-ResNeXt50_32x4d block, the input

goes through a split-transform-merge structure, the grouped convolutions with 32 groups, for extracting features. Then the data is fed into an SE-Net

module, the result of which is added with initial input by a skip-connection.

3.3 The cascaded training scheme

Inspired by our previous work on retinal vessel segmentation,33 we implemented our model with a cascaded manner. In this way, we can first obtain

coarse segmentation results and then utilize the information given in the coarse results. Then we select the key slices of the kidneys based on

the coarse segmentation, and generate key patches for refinement. The overall cascaded implementation pipeline of our proposed SERU model is

displayed in Figure 2.

In the first stage, we train the SERU model with preprocessed training data, and produce coarse segmentation results. For one case with a

series of CT slides, after coarse segmentation results generation, we regard the predicted kidney and tumor region as one meta class. Then we

find out the key slides by checking which slide contains the maximum contour of the left kidney and right kidney, respectively. In addition, we

extract the max bounding-boxes from the contours of left and right kidney for each case, and treat them as the region of interest for the second

refinement stage.

F I G U R E 2 The overall implementation pipeline of our proposed SE-ResNeXT U-Net (SERU) model in cascaded manner
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In the second stage, we enlarge the bounding-boxes to the size 256 × 256, and propagate the enlarge bounding-box of the key slice to all other

slides within the same case for finer segmentation. Then we adopt the left and right 256*256 refine patches generated by last step for refine training,

and use the same SERU model with different input scale.

After getting the segmentation results from the first and second stage, we fuse them by a linear combination with different weights,

which goes as

predictions = 𝛼 ∗ coarse + (1 − 𝛼) ∗ refined, (2)

where 𝛼 is the ratio weighting the coarse results and refined results when fusing.

4 EXPERIMENTS

4.1 Dataset

We evaluated our method on the kidney dataset provided by KiTS19.1 The data is collected from 300 underwent partial or radical nephrectomy

patients between 2010 and 2018 at the University of Minnesota Medical Center. We can access the abdominal CT images and corresponding

voxel-wise ground truth labels. The dataset contains 300 cases, of which 210 cases for training and 90 for testing. In our experiments, we randomly

split the 210 cases into 168 cases as the training set and the remaining 42 cases as the validation set. The axial 2D data is utilized in this study, and

the size of each slice is 512 × 512.

4.2 Implementation

We implement our model with PyTorch. The Adam optimizer is adopted to train our model with an initial learning rate of 1∗10−4, and

we decrease the learning rate every five epochs with a rate of 0.1. We initialize the weights of the contracting path in the SERU by

using the pre-trained weights on ImageNet provided by this GitHub repository §. The proposed model is trained and tested following the

pipeline discussed in Section 3.3 on a machine with Intel i7-7700K CPU and an NVIDIA 1080Ti GPU. We train our model for 30 epochs.

In addition, we adopt random horizontal and vertical flipping for data augment. The fusion weighting ratio 𝛼 is set to be 0.4 in this

study.

4.3 Evaluation Metrics

The Sørensen-Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the kidney+tumor

segmentation results and tumor segmentation results. It represents the ratio of the intersecting area between the prediction results and the ground

truth label to their total area.

The DSC can be formulated as

DSC = 2TP
2TP + FP + FN

, (3)

where TP, FP, and FN stand for true positive, false positive, and false negative, respectively. Specially, two metrics have been calculated in which

kidney+tumor and tumor are regarded as foreground tissues, respectively.

In testing stage, the overall ranking score of the 90 cases in the testing set can be calculated as

S = 1
90

89∑
i=0

1
2

⎛⎜⎜⎝
2 ∗ n(i)

t,tp

2 ∗ n(i)
t,tp + n(i)

t,fp
+ n(i)

t,fn

+
2 ∗ n(i)

k,tp

2 ∗ n(i)
k,tp

+ n(i)
k,fp

+ n(i)
k,fn

⎞⎟⎟⎠
, (4)

where k represents kidney or tumor, and t represents tumor only.

§ https://github.com/Cadene/pretrained-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch
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5 EXPERIMENTAL RESULTS

5.1 Overall Performance

In this study, we evaluate our model on the validation set, and adopt kidney+tumor DSC, tumor DSC, and average DSC as evaluation metrics. As can

be seen from TABLE 1, our SERU model can obtain the kidney+tumor DSC of 96.77%, the tumor DSC of 74.32%, and the average DSC of 85.55%.

To better demonstrate the effectiveness of our proposed SERU model, we compared with two widely used segmentation models, that is, U-Net6

and FCNs.21 As shown in TABLE 1, our SERU model can achieve better performance in kidney DSC, tumor DSC and average DSC. Especially, the Aer-

age DSC of SERU is 85.55% which is around 15% higher than the U-Net and fully convolutional network (FCN). This demonstrates the effectiveness

of the backbone network of our model.

Further, we visualize the segmentation results of U-Net, different version of FCN, and our proposed SERU model in FIGURE 3. As can be seen,

our method can obtain much accurate segmentation which with less false positive prediction. In the first row, the FCN fails to identify both kidney

and tumor region. In the third row where there are no kidney/tumor region, the U-Net model and FCN model generate false positive prediction.

5.2 Ablation study

5.2.1 The influence of each component

Our proposed SERU model mainly takes the advantages from the U-Net, SENet, and ResNeXT. In this section, we conduct a ablation study to analyze

the influence of each component, and reported the results in Table 2. Firstly, we can observe that combining the unet with the senet or resnext has

a very slight effects for the Kidney DSC, while can give around 6% improvement of the Tumor DSC. However, when combining the unet with both

senet and resnext, we can obtain a significant boost of the Tumor DSC and Average DSC.

5.2.2 The effectiveness of two-stage training scheme

In the first stage, our method performs well in segmenting kidneys, while worse in tumors with a dice score of 96.87%. Then, we can obtain the

bounding-box for kidney region and crop the patches from original images as the input of refine model. Through the cascaded refinement, the

Methods Kidney DSC Tumor DSC Average DSC

U-Net 94.34% 43.98% 69.16%

FCN 94.38% 48.39% 71.38%

FCN8s 94.03% 52.49% 73.26%

FCN16s 93.33% 53.00% 73.17%

FCN32s 91.56% 35.94% 63.75%

Ours 96.77% 74.32% 85.55%

Abbreviation: DSC, Dice similarity coefficient; FCN, fully convolutional network.

TA B L E 1 Results compares with different methods

TA B L E 2 The segmentation accuracy under different model combinations at the first stage and the second stages

First stage Second stage

Methods Kidney DSC Tumor DSC Avg DSC Kidney DSC Tumor DSC Avg DSC

unet 93.46% 39.03% 66.25% 95.39% 49.77% 72.58%

unet+senet 93.89% 45.63% 69.76% 94.58% 49.98% 72.28%

unet+resnext 93.30% 44.82% 69.06% 95.54% 57.97% 76.76%

unet+senet+resnext 96.87% 71.57% 84.22% 96.77% 74.32% 85.55%

Abbreviation: DSC, Dice similarity coefficient.
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F I G U R E 3 Results with different methods. Masks with colors are the ground truth and predictions results. Ori: Original images. GT: Ground
truth of images. The mask with blue color indicates the kidney and red is for tumor. Other Methods: Difference between ground truth and

prediction results of U-Net, FCN, FCN8s, FCN16s, FCN32s and ours. The blue mask represents prediction of kidney, red for tumor, the pink is for
false kidney prediction, the yellow is ground truth of tumor not predicted, and the sky-blue is ground truth of kidney not predicted

dice of tumor can be improved from 71.57% to 74.32%, which indicates the second stage will focus on learning more discriminative features for

distinguishing tumor from the kidney.

In Figure 4, we show several prediction results between two stages. We can see that the results of the first stage are incomplete or incorrect.

But after applying the refine model, our model can correct those errors and then improve the performance.

5.2.3 The impact of preprocessing and data augmentation

During the training process, we adopt the CLAHE preprocessing to enhance the contrast of the CT scans, as well as the horizon and vertical flipping

for augmentation. In this section, we conduct experiments to evaluate the impact of the CLAHE and data augmentation step.

As shown in Table 3, for the unet, unet+senet, and unet+resnext model, the performance of the models trained with CLAHE are very simillar with

the models without using the CLAHE preprocessing step. On the other hand, for our proposed SERU which contains the unet, senet, and resnext,

we can observe that there are a significant boost of the Tumor DSC (70.61% vs 74.32%) and the Average DSC (83.57% vs 85.55%). These results

demonstrate that the CLAHE preprocessing is beneficial for improving the segmentation accuracy of proposed SERU.

In Table 4, we reported the segmentation results between the model trained with and without the data augmentation. From the Table 4, we can

observe that the data augmentation step has a signification impact of increase the Tumor DSC and the Average DSC of our proposed SERU model.

5.2.4 Parameter sensitivity analysis

As introduced in Section3.3, after getting the coarse and fine segmentation from the first stage and the second stage, we then integrate them by a

linear combination controlled the weight 𝛼. In this section, we analyze the sensitivity of 𝛼. As can be seen from Table 5, we can find that our model
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F I G U R E 4 Results with different stages. Ori: Original images. GT: The ground truth of the images. Stage 1: Results of the first stage. Stage 2:
Results of the second stage. The blue mask represents prediction of kidney, red for tumor, the pink is for false kidney prediction, the yellow is
ground truth of tumor not predicted, and the sky-blue is ground truth of kidney not predicted

Methods Kidney DSC Tumor DSC Avg DSC

unet (w/o CLAHE) 94.59% 50.12% 72.36%

unet+senet (w/o CLAHE) 95.31% 49.68% 72.49%

unet+resnext(w/o CLAHE) 95.45% 62.00% 78.72%

unet+senet+resnext (w/o CLAHE) 96.53% 70.61% 83.57%

unet 95.39% 49.77% 72.58%

unet+senet 94.58% 49.98% 72.28%

unet+resnext 95.54% 57.97% 76.76%

unet+senet+resnext 96.77% 74.32% 85.55%

Abbreviation: DSC, Dice similarity coefficient.

TA B L E 3 The segmentation results of our

proposed model trained with/without the CLAHE
preprocessing step

achieves the best average DSC when 𝛼 equals to 0.4. Compared with the result only from the first stage (𝛼=1) and the second stage (𝛼=0), there are

a 2.12% and 0.28% increase of the average DSC, respectively. These results suggest that fusing the results from two stages is helpful for improving

accuracy.
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TA B L E 4 The segmentation results of the
different model trained with/without the
data augmentation

Methods Kidney DSC Tumor DSC Avg DSC

unet (w/o Data Augment) 95.67% 48.94% 72.31%

unet+senet (w/o Data Augment) 95.31% 49.68% 72.49%

unet+resnext (w/o Data Augment) 95.90% 55.91% 75.90%

unet+senet+resnext (w/o Data Augment) 95.45% 58.04% 76.75%

unet 95.39% 49.77% 72.58%

unet+senet 94.58% 49.98% 72.28%

unet+resnext 95.54% 57.97% 76.76%

unet+senet+resnext 96.77% 74.32% 85.55%

Abbreviation: DSC, Dice similarity coefficient.

TA B L E 5 The performance of fusion the results from the first stage and
second stage by using different 𝛼

Alpha Kidney DSC Tumor DSC Avg DSC

0 96.58% 73.96% 85.27%

0.1 96.64% 74.15% 85.40%

0.2 96.69% 74.29% 85.49%

0.3 96.73% 74.32% 85.53%

0.4 96.77% 74.32% 85.55%

0.5 96.83% 73.85% 85.34%

0.6 96.87% 73.05% 84.96%

0.7 96.90% 72.53% 84.71%

0.8 96.90% 72.13% 84.51%

0.9 96.89% 71.82% 84.35%

1 96.40% 70.46% 83.43%

Abbreviation: DSC, Dice similarity coefficient.

6 CONCLUSION

In this work, we propose a 2D kidney tumor segmentation model named cascaded SE-ResNeXT U-Net (SERU), which combines the advantages

of SE-Net, ResNeXT, and U-Net. The model is implemented in a coarse-to-fine manner, which first performs a coarse segmentation. Then for

fully utilizing the information from coarse results, we find the key slices with the largest left and right kidney region, respectively. The key slices'

predicted kidney regions are utilized for generating kidney bounding-boxes, which serve as the input patches of the refinement model. After,

we apply the same SERU model on the patches as mentioned above and produce predictions refined in patches. To fully utilizing the global

and local information of given CT slides, we integrate the results of the coarse and refine stage by a weighting parameter 𝛼. We train and test

our method on the KiTS19 Challenge. We got promising results among 2D-based methods that, compared with U-Net and FCN, our model

achieves better results on both kidney DSC, tumor DSC, and the overall average DSC. For finding the best policy for integrating different stages'

prediction, we implement an ablation study on the weighing parameter. Visualized comparisons and quantified results show not only the superi-

ority of our backbone SERU network for extracting features of kidney CT images, but also the effectiveness of our coarse-to-fine segmentation

procedure.
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